原位表面改性的增材制造纳米WC/AlSi10Mg 合金增强机制

原位表面改性的增材制造纳米WC/AlSi10Mg 合金增强机制
2024年05月19日 17:29 3D科学谷

以下文章来源于中国有色金属学报 ,作者中国有色金属学报

随着新能源汽车、航空航天、高端装备等战略新兴产业朝轻量化、智能化方向快速发展,对轻量化结构件的“材料-结构-性能一体化”要求越来越高,使用激光选区熔化(SLM)增材制造技术制造高性能铝基结构件已成为当前研究热点。现有研究多采用添加纳米陶瓷颗粒作为铝合金基体增强相,提升SLM成形铝基复合材料的综合性能。众所周知,纳米WC颗粒具有优异耐磨和力学性能,常作为铁基、镍基、钴基和铝基复合材料的增强相。本文选择纳米WC颗粒作为增强相,添加到AlSi10Mg基体中,通过选择性激光熔化增材制造技术(SLM)制备高性能的铝基纳米复合材料。为克服纳米WC颗粒之间因范德华力而产生的自团聚问题,采用静电自组装工艺制备纳米WC复合AlSi10Mg铝合金粉末,在最优SLM成形工艺下3D打印所需试样,系统研究纳米WC添加对AlSi10Mg铝合金基体晶粒形貌、析出相分布、相组成、力学和摩擦磨损性能的影响,明确其形核机理及铝基体微观组织演变和性能调控机制。

© 3D科学谷白皮书

▲论文链接:http://www.ysxbcn.com/paper/paperview.aspx?id=paper_1051214

/ 文章亮点

证实了SLM 制备的纳米WC/AlSi10Mg 材料中形成多种Al−W 金属间化合物相,通过(002)α(Al)//(104)Al5W 的取向关系,确认具有4.7%的低晶格失配度的Al/Al5W 可形成良好共格界面,纳米WC 颗粒和Al−W 相可促使柱状晶转变为等轴晶,获得精细的等轴晶组织。

/ 图文解析

图1 SLM成形纳米WC/AlSi10Mg试样中纳米颗粒相HRTEM、EDS和SAED分析(a) Al5W 相; (b) Al12W 相; (c) Al4W 相

图1所示为添加1 wt.%纳米WC试样中观察的粒状颗粒形貌、EDS元素分析、界面及电子衍射斑点图,结果表明该颗粒为Al5W相。对其界面高分辨照片中界面两侧的晶面间距进行计算,表明α-Al 和Al5W之间具有匹配良好的共格界面,界面晶体学关系为图片和(002)α(Al)//(104)Al5W。纳米颗粒点I的C元素含量比较高,表明Al5W主要是围绕分解的纳米WC颗粒周边形成和长大。需要特别注意的是电子衍射斑点图中还出现了明显衍射环,对应于 (012)Al5W 和 (022)Al5W相,进一步证实基体组织中生成了大量细小纳米Al5W颗粒。为确认Al5W与α-Al的共格界面,采用方程式(1)计算了α-Al(立方,Fm-3M空间群)与Al5W(六方,P63空间群)晶格匹配度。此外,在图1 (a)和(b)的SAED衍射斑点中,均有检测到α-Al的衍射斑点。

同时采用第一性原理计算了Al/Al5W界面的不同参数和晶体结构,如图2所示。模拟和计算结果都表明两者之间能形成稳定的共格界面,通过方程式(1)计算 (002)α-Al 和 (104)Al5W晶格匹配度为4.7%,小于形成共格界面所需最低错配度5%的要求。这些模拟计算结果也进一步证实了图1 (a)高分辨HRTEM中观察到的良好共格界面。如图1 (c)所示,通过EDS元素和电子衍射斑点结果分析,证实了添加5 wt.%纳米WC成形试样中观察到的多边形纳米颗粒 Ⅲ为纳米Al4W相。与Al/Al5W的共格界面不同,Al/Al4W之间为半共格界面,通过计算高分辨HRTEM中界面两侧的晶面间距,证实界面两侧的晶面分别为(110)Al4W and (111)α-Al。这种半共格界面有可能是位错形成原因。此外,通过分析不同纳米颗粒的电子衍射斑点,在添加1 wt.%纳米WC的成形试样中,还检测到在XRD检测中没有出现的Al12W相,其形成也在类似文献中有报道,形成的可能反应式如式(2)所示:

式中, δ 是晶格匹配度, α 是不同相的晶格常数。

图2 (002)α-Al/(104)Al5W 界面模拟计算图

Fig.2 Calculation of the (002)α-Al/(104)Al5W interface

上述反应方程式(2)表明,Al12W相是随着凝固过程中纳米Al5W的进一步分解而产生,因此在添加不同纳米WC的SLM成形试样中仅有少量纳米Al12W生成。同时,如图2中所示,纳米颗粒 Ⅱ的Al和C元素含量非常高,而W元素含量为零,推测这一纳米颗粒有可能为Al4C3相,然而因为含量过少,在XRD中无明显衍射峰出现。

总结来看,在SLM成形激光熔池的高温作用下,添加的纳米WC颗粒部分溶解于α-Al基体,并与铝合金基体的主要元素反应生成一系列Al-W金属间化合物。随着激光选区熔化的熔池开始凝固,高熔点纳米WC和Al-W化合物颗粒倾向于形成。计算表明(104)Al5W相和(002)α-Al相之间的晶格失配为4.7%,根据Turnbull和Vonnegut的研究结果,临界形核过冷度(ΔTn)与晶格失配度(δ)的变化呈正相关,符合方程式(3),其中CE是弹性系数,ΔSv是单位体积相变熵:

因此,基于Al5W相与α-Al基体之间良好的共格界面,可以促进柱状晶转变为等轴晶组织,抑制晶粒的生长。另外也可以作为异质形核剂促进Mg2Si相析出。

/ 研究结论

采用静电自组装工艺分别制备了不同含量WC的AlSi10Mg复合粉末,在最优SLM成形工艺条件下,制备得到1 wt.%、3 wt.%和5 wt.%纳米WC/AlSi10Mg成形试样。系统研究了纳米WC添加量对显微组织演变及性能影响规律,优化纳米WC对铝合金基体的合适添加量。初步探索了纳米WC颗粒在铝基体中的界面微结构、显微组织调控及性能强化机理。通过晶格参数计算Al5W与α-Al的晶格匹配度为4.7%,Al5W/Al界面微结构表征也证实了Al5W/Al间具有良好共格界面,其界面晶体学关系为图片和 (002)α-Al//(104)Al5W。基于Al5W与α-Al的共格界面及其他纳米Al-W中间相的强化作用,显著提升了SLM成形AlSi10Mg试样的力学和摩擦磨损性能。

引用格式Jiang-long YI, Han-lin LIAO, Cheng CHANG, Xing-chen YAN, Min LIU, Ke-song ZHOU. Reinforcing effects of nano-WC in AlSi10Mg alloy assisted by in-situ surface modification approach [J]. Transactions of Nonferrous Metals Society of China, 2024, 34 (01): 50-64.

财经自媒体联盟更多自媒体作者

新浪首页 语音播报 相关新闻 返回顶部