水泵的扬程是指水泵能够扬水的高度,又称压头。可表示为流体的压力能头、动能头和位能头的增加,即:H=(P2-P1)/ρg+(V2²-V1²)/2g+Z2-Z1,公式中:H为扬程(m);P1,P2为泵进出口处液体的压力(Pa);V1,V2为流体在泵进出口处的流速(m/s);Z1,Z2为进出口高度(m);ρ为液体密度(kg/m³);g为重力加速度(m/s²)。
空调水系统一般都是闭式循环系统,在一个运行稳定的闭式系统中,假设水泵位于系统最低端,水泵进出口高度基本相同可以忽略,水泵前后静水压力基本相同,同一管路水泵进出口流量相同则流速相同,水泵扬程即可简化为H=(P2-P1)/ρg,因此可简单认为,水泵在出口处形成的压力可等效为水泵扬程H高水柱所形成的压力,再加上静水压力就等于水泵出口处工作压力。
水泵位于系统的高度不同,系统的工作压力就会不同,假设P为系统某点的压力,H为扬程,hz为从水泵出口到某点的总阻力,h为系统最高点到某点的高度,我们可以简单认为任一点的压力P=H-hz+h。因此,我们可以通过以下三种情况来分析管路工作压力:
第一种:循环水泵位于系统最低点,此种情况水泵出口hz最小h最大所以系统最大压力点位于水泵出口,我们可以把水泵的扬程加上系统总高差形成的静水压力看作水泵出口点的工作压力及P=H+h。
第二种:循环水泵位于系统中间位置,随着水泵(沿水流方向移动)高度的提升,水泵出口压力在减少,水泵进口方向的系统最低点压力在升高,但始终小于第一种情况中系统最低点的工作压力。
第三种:循环水泵位于系统最高点,当水泵继续沿水流方向移动,随着水泵高度的继续提升,直到达到系统最高点,水泵出口压力减到最小,系统最低点压力升高(为P=H-hz+h),由此看出,系统任一点的压力均小于第一种情况中系统最低点的工作压力。
因此在一般工程实际中,我们可以认为,系统任一点的压力均小于水泵扬程(在运行稳定的管路中,水泵的实际扬程与管路阻力相等),加上系统总高差所形成的压力即系统任一点的压力P≤H+h,在此基础之上,我们再结合工程的实际情况,在合理范围内考虑一定的工作压力的余量,就可以给出一个确定的设计工作压力。但在每个工程中都有其实际情况的特殊性,我们要根据不同的情况来作具体的分析和判断。
4000520066 欢迎批评指正
All Rights Reserved 新浪公司 版权所有